

Topic Test Summer 2022

Pearson Edexcel GCE Mathematics (9MA0)

Paper 3 – Statistics

Topic 4: Discrete probability distributions; normal approximation

Contents

General guidance to Topic Tests	3
Revise Revision Guide content coverage	4
Questions	5
Mark Scheme	20

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General guidance to Topic Tests

Context

• Topic Tests have come from past papers both <u>published</u> (those materials available publicly) and unpublished (those currently under padlock to our centres) presented in a different format to allow teachers to adapt them for use with candidates.

Purpose

- The purpose of this resource is to provide qualification-specific sets/groups of questions covering the knowledge, skills and understanding relevant to this Pearson qualification.
- This document should be used in conjunction with the advance information for the subject as well as general marking guidance for the qualification (available in published mark schemes).

Revise Revision Guide content coverage

The questions in this topic test have been taken from past papers, and have been selected as they cover the topic(s) most closely aligned to the A level advance information for summer 2022:

- Topic 4: Discrete probability distributions; normal approximation

The focus of content in this topic test can be found in the Revise Pearson Edexcel A level Mathematics Revision Guide. Free access to this Revise Guide is available for front of class use, to support your students' revision.

Contents	Revise Guide Level	
	page reference	
Pure Mathematics	1-111	A level
Statistics	112-147	A level
Mechanics	148-181	A level

Content on other pages may also be useful, including for synoptic questions which bring together learning from across the specification.

Questions

1.	set, can be modelled by a discrete uniform distribution.	
	(a) Write down the probability distribution for C .	
		(2)
	(b) Using this model, find the probability that cloud cover is less than 50%	(1)
	Helen used all the data from the large data set for Hurn in 2015 and found that the proportion of days with cloud cover of less than 50% was 0.315	
	(c) Comment on the suitability of Helen's model in the light of this information.	(1)
	(d) Suggest an appropriate refinement to Helen's model.	
		(1)

Question 1 continued	

3.	In an experiment a group of children each repeatedly throw a dart at a target. For each child, the random variable H represents the number of times the dart hits the target in the first 10 throws.	
	Peta models H as $B(10, 0.1)$	
	(a) State two assumptions Peta needs to make to use her model.	(2)
	(b) Using Peta's model, find $P(H \ge 4)$	(1)
	For each child the random variable F represents the number of the throw on which the dart first hits the target.	
	Using Peta's assumptions about this experiment,	
	(c) find $P(F = 5)$	(2)
	Thomas assumes that in this experiment no child will need more than 10 throws for the dart to hit the target for the first time. He models $P(F = n)$ as	
	$P(F=n)=0.01+(n-1)\times\alpha$	
	where α is a constant.	
	(d) Find the value of α	(4)
	(e) Using Thomas' model, find $P(F = 5)$	(4)
	(f) Explain how Peta's and Thomas' models differ in describing the probability that a dart hits the target in this experiment.	(1)
	dart mis the target in this experiment.	(1)

Question 3 continued	

Question 3 continued	

Question 3 continued	

4. Magali is studying the mean total cloud cover, in oktas, for Leuchars in 1987 using data from the large data set. The daily mean total cloud cover for all 184 days from the large data set is summarised in the table below.

Daily mean total cloud cover (oktas)	0	1	2	3	4	5	6	7	8
Frequency (number of days)	0	1	4	7	10	30	52	52	28

One of the 184 days is selected at random.

(a) Find the probability that it has a daily mean total cloud cover of 6 or greater.

(1)

Magali is investigating whether the daily mean total cloud cover can be modelled using a binomial distribution.

She uses the random variable X to denote the daily mean total cloud cover and believes that $X \sim B(8, 0.76)$

Using Magali's model,

(b) (i) find $P(X \ge 6)$

(2)

(ii) find, to 1 decimal place, the expected number of days in a sample of 184 days with a daily mean total cloud cover of 7

(2)

(c) Explain whether or not your answers to part (b) support the use of Magali's model.

(1)

There were 28 days that had a daily mean total cloud cover of 8 For these 28 days the daily mean total cloud cover for the **following** day is shown in the table below.

Daily mean total cloud cover (oktas)	0	1	2	3	4	5	6	7	8
Frequency (number of days)	0	0	1	1	2	1	5	9	9

(d) Find the proportion of these days when the daily mean total cloud cover was 6 or greater.

(1)

(e) Comment on Magali's model in light of your answer to part (d).

(2)

Question 4 continued	

Question 4 continued	

Question 4 continued	

١.	(a) State one disadvantage of using quota sampling compared with simple random sampling.	
		(1)
	In a university 8% of students are members of the university dance club.	
	A random sample of 36 students is taken from the university.	
	The random variable X represents the number of these students who are members of the	dance club.
	(b) Using a suitable model for X, find	
	(i) $P(X = 4)$	
	(ii) $P(X \ge 7)$	
		(3)
	Only 40% of the university dance club members can dance the tango.	
	(c) Find the probability that a student is a member of the university dance club and can dance the tango.	
	dance the tango.	(1)
	A random sample of 50 students is taken from the university.	
	(d) Find the probability that fewer than 3 of these students are members of the	
	university dance club and can dance the tango.	(2)

Question 1 continued.	

6. The discrete random variable X has the following probability distribution

x	а	ь	С
P(X=x)	$\log_{36} a$	$\log_{36} b$	$\log_{36} c$

where

- a, b and c are distinct integers (a < b < c)
- all the probabilities are greater than zero
- (a) Find
 - (i) the value of a
 - (ii) the value of b
 - (iii) the value of c

Show your working clearly.

(5)

The independent random variables $X_{\rm I}$ and $X_{\rm 2}$ each have the same distribution as X

(b) Find $P(X_1 = X_2)$

(2)

Question 6 continued.	

Question 6 continued.	

Mark Scheme

Qu 1					Sch	eme						Marks	AO
(a)	С	0	1	2	3	4	5	6	7	8		B1	1.2
	P(C=c)	<u>1</u> 9	<u>1</u> 9	1 9	<u>1</u> 9	<u>1</u>	<u>1</u>	1 9	1 9	<u>1</u> 9		B1ft	1.2
												(2)	
(b)	$P(C < 4) = \frac{4}{9}$	(acce	pt 0.44	44 or 1	oetter))						B1	3.4
									(1)				
(c)	Probability low	er tha	n expe	ected s	sugges	sts mo	del is	<u>not</u> go	od			B1ft	3.5a
	G	••		0								(1)	
(d)	e.g. Cloud cov		•				onth a	nd pla	ce to p	olace		B1	3.5c
	So e.g. use a 1	1011-ui	шош	aistri	Dunon	1						(1) (5 mark	e)
							Note	<u> </u>				(S mark	.5)
(a)	1 st B1 for a co	rrect s	et of v	alues	for c	Alloy							
	2 nd B1ft for co									vith d	iscrete unif	form distril	a'n
	Maybe as a pi												
	clearly define				(-	,	, 9 -			9 P-3	(~, -, - ,,	·, 12
	crearry define	G BOIII	CVVIICI	.									
(b)	B1 for usin	g corr	ect mo	del to	get 4	(o.e	.)						
SC	Sample space	- {1,	, 8 } If	score	1 B0B	31 in (a	a) for	this al	low P	$C \le 4$	$a = \frac{3}{8}$ to se	ore B1 in ((b)
		,	•								, 8		
(c)	B1ft for con	mmen	t that s	states	that th	ne mod	lel pro	posed	is or	is not	a good one	based on	
	their n		_			_					. .		
	(b) - 0.315 >										te" etc		
	$ (\mathbf{b}) - 0.315 \le 0.05$ Allow a comment that suggests it <u>is</u> suitable No prob in (b) Allow a comparison that mentions 50% or 0.5 and rejects the model												
	No prob in (b)									1 0.5 u	na rejects i	ine moder	
			comm							erns.			
	7.		o.										
(d)						_	varia	tions 1	n mor	ith or	location		
	Just sa Context & "no	-					of diff	erent 1	ocatio	ns m	onths and r	non-unifor	n
										-	olities base		
	Context & "bi											mial	
	Just refined model Model must be outlined and discrete and non-uniform												
	e.g. higher probabilities for more cloud cover <u>or</u> lower probabilities for less cloud cover												
	Continuous model Any model that is based on a continuous distribution. e.g. normal is B0												

Qu 3	Scheme	Marks	AO				
(a)	The <u>probability</u> of a dart hitting the target is <u>constant</u> (from child to child and for each throw by each child) (o.e.)	B1	1.2				
	The <u>throws</u> of each of the darts are <u>independent</u> (o.e.)	B1 (2)	1.2				
(b)	$[P(H \ge 4) = 1 - P(H \le 3) = 1 - 0.9872 = 0.012795 =]$ awrt <u>0.0128</u>	B1 (1)	1.1b				
(c)	$P(F = 5) = 0.9^4 \times 0.1, = 0.06561$ = awrt <u>0.0656</u>	M1, A1 (2)	3.4 1.1b				
(d)	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	M1	3.1b				
	Sum of probs = 1 $\Rightarrow \frac{10}{2} [2 \times 0.01 + 9\alpha] = 1$	M1A1	3.1a 1.1b				
	[i.e. $5(0.02 + 9\alpha) = 1$ or $0.1 + 45\alpha = 1$] so $\alpha = \underline{0.02}$	A1 (4)	1.1b				
(e)	$P(F = 5 Thomas' model) = \underline{0.09}$	B1ft (1)	3.4				
(f)	Peta's model assumes the <u>probability</u> of hitting target is <u>constant</u> (o.e.) and <u>Thomas</u> ' model assumes this <u>probability increases</u> with each attempt(o.e.)	B1	3.5a				
		(1) (11 mark	(s)				
	Notes						
(a)	1 st B1 for stating that the <u>probability</u> (or possibility or chance) is <u>constant</u> (or f 2 nd B1 for stating that <u>throws</u> are <u>independent</u> ["trials" are independent is B0]	ixed or sa	me)				
(b)	B1 for awrt 0.0128 (found on calculator)						
(c)	M1 for a probability expression of the form $(1-p)^4 \times p$ where $0 \le p \le 1$ A1 for awrt 0.0656						
SC	Allow M1A0 for answer only of 0.066						
(d)	1^{st} M1 for setting up the distribution of F with at least 3 correct values of n and $P(F = n)$ in terms of α . (Can be implied by 2^{nd} M1 or 1^{st} A1) 2^{nd} M1 for use of sum of probs = 1 and clear summation or use of arithmetic series formula						
	(allow 1 error or missing term). (Can be implied by 1st A1)	100 10111101	u				
	1^{st} A1 for a correct equation for α 2^{nd} A1 for $\alpha = 0.02$ (must be exact and come from correct working)						
(e)	B1ft for value resulting from $0.01 + 4 \times$ "their α " (provided α and the answer are probs) Beware If their answer is the same as their (c) (or a rounded version of their (c)) score B0						
(f) ALT	B1 for a suitable comment about the <u>probability</u> of hitting the target Allow idea that Peta's model suggests the dart may never hit the target but Tho it will hit at least once (in the first 10 throws).	omas' says	that				

Question	Scheme	Marks	AOs				
4 (a)	$\frac{132}{184} = 0.71739$ awrt <u>0.717</u>	B1	1.1b				
		(1)					
(b)(i)	$P(X \ge 6) = 1 - P(X \le 5)$ or $P([X =]6) + P([X =]7) + P([X =]8)$	M1	3.4				
	=1-0.296722 awrt <u>0.703</u>	A1	1.1b				
		(2)					
(b)(ii)	$184 \times P(X = 7)$ [= 184×0.2811]	M1	1.1b				
	= 51.7385 awrt <u>51.7</u>	A1	1.1b				
		(2)					
(c)	Part (a) and part (b)(i) are similar and the expected number of 7s (51.7 or 0.281) matches with the number of 7s found in the data set (52 or 0.283) so Magali's model is supported.	B1ft	3.5a				
		(1)					
(d)	$\frac{23}{28} = 0.82142$ awrt <u>0.821</u>	B1	1.1b				
		(1)					
(e)	Any one of Part (d)/'0.821' differs from part (a)/(b)(i)/(0.7) there is a greater/different probability of high cloud cover/more likely to have high cloud cover if the previous day had high cloud cover independence(o.e.) does not hold	В1	2.4				
	therefore Magali's (binomial) model may not be suitable.	dB1	3.5a				
		(2)					
		(9 marks)				
	Notes						
	Allow fractions, decimals or percentages throughout	this questi	ion.				
(a)	Allow equivalent fraction, e.g. $\frac{33}{46}$						
(L)(2)	M1: for writing or using $1 - P(X \le 5)$ or $P(X = 6) + P(X = 7)$	$\overline{7}$) + P($X =$	8)				
(b)(i)	A1: awrt 0.703 (correct answer scores 2 out of 2)						
(b)(ii)	M1: for $184 \times P(X = 7)$ o.e. e.g., $184 \times [P(X \le 7) - P(X \le 6)]$ A1: awrt 51.7						
(c)	B1ft: comparing '0.717' with '0.703' and '51.7 or '0.281' with 52 or 0.283 and concluding that Magali's model is supported (must be comparing prob. with prob. and days with days). Allow not supported or mixed conclusions if consistent with their f.t. answers in (a) and (b)						
(e)	B1: Any bullet point dB1: (dep on previous B1) for Magali's model may not be sui Condone not accurate for not suitable SC: part (d) is similar to part (a)/(b)(i) and a compatible concluded is supported) to score B1B1.	, ,					

Qu 1	Scheme		Marks	AO			
(a)	Disadvantage: e.g. Not random; cannot use (re	B1	1.1b				
		(1)					
(b)	[Sight or correct use of] $X \sim B(36, 0.08)$	4 0 1 6 7	M1	3.3			
(i)	P(X = 4) = 0.167387 a		A1	1.1b			
(ii)	[P(X7) = 1 - P(X ,, 6) =] 0	0.022233 awrt <u>0.0222</u>	A1	1.1b			
(c)	P(In dance club and dance tango) = 0.4×0.08 =	(3) B1	1.1b				
(d)	[Let $T =$ those who can dance the Tango. Sight	or use of] $T \sim B(50, "0.032")$	(1) M1	3.3			
	[P(T < 3) = P(T, 2) =] 0.7850815	awrt <u>0.785</u>	A1	1.1b			
			(2)				
			(7 m	arks)			
		tes					
(a)	B1 for a suitable disadvantage:	D. MOT. II	(T) (1)				
	Allow (B1)	Do NOT allow	(B0)				
	Not random <u>or</u> less random (o.e.) Cannot use (reliably) for inferences	Not representative Less accurate					
	(More likely to be) biased	Any comment based on time	ne or cost				
	(Note likely to be) blased	Any mention of skew	ic or cost				
		Any mention of non-respon	ise				
			0.00				
(b)	M1 for sight of B(36, 0.08) Allow in words: bi may be implied by one correct answer to 2sf Allow for $36C4 \times 0.08^4 \times 0.92^{32}$ as this is "co	or sight of $P(X, 6) = 0.97$		wrt 0.98			
(i)	1st A1 for awrt 0.167 NB An answer of just awrt 0.167 scores $M1(\Rightarrow)1^{st}$ A1						
(ii)	2 nd A1 for awrt 0.0222						
(c)	B1 for 0.032 o.e. (Can allow for sight of 0.4×0.08)						
(d)	M1 for sight of B(50, "0.032") ft their answer may be implied by correct answer or sight of $[P(T, 3)] = 0.924348$ i.e. awrt		•				
MR	A1 for awrt 0.785 Allow MR of 50 (e.g. 30) provided clearly	attempting $P(T, 2)$ and sc	ore M1A0				

Qu 6	Scheme	Marks	AO			
(a)	[Sum of probs = 1 implies] $\log_{36} a + \log_{36} b + \log_{36} c = 1$	M1	3.1a			
	$\Rightarrow \log_{36}(abc) = 1$ so $abc = 36$	A1	3.4			
	All probabilities greater than 0 implies each of a, b and $c > 1$	B1	2.2a			
	$36 = 2^2 \times 3^2$ (or 3 numbers that multiply to give 36 e.g. 2, 2, 9 etc.)	dM1	2.1			
	Since a, b and c are distinct must be $(a = 2, b = 3, c = 6)$	A1	3.2a			
		(5)				
(b)	$(\log_{36} a)^2 + (\log_{36} b)^2 + (\log_{36} c)^2$	M1	3.4			
	[=0.0374137+0.09398737+0.25]					
	= 0.38140 awrt <u>0.381</u>	A1	1.1b			
		(2)				
		(7 mark	(8)			
	Notes					
(a)	1 st M1 for a start to the problem using sum of probabilities leading to eq'n	$\overline{a, b}$ and	С			
	1^{st} A1 for reducing to the equation $abc = 36$ [Must follow from their equation $abc = 36$ [Must foll					
NB	Can go straight from $abc = 36$ to the answer for full marks for part (a).				
	B1 for deducing that each value > 1 (may be implied by 3 integers all > 1 in the next line)					
	2 nd dM1 (dep on M1A1) for writing 36 as a product of prime factors or					
	3 values with product = 36 and none = 1					
	2^{nd} A1 for 2, 3 and 6 as a list or $a = 2$, $b = 3$ and $c = 6$					
SC	M0M0 If no method marks scored but a correct answer given score: M0A0F	`	2/5)			
Ans only	This gets the SC score of 2/5 [Question says show your working cl	eariyj				
(b)	M1 for a correct expression in terms of a , b and c or values; ft their integer	rs a , b and	. c			
	Condone invisible brackets if the answer implies they are used.					
	A1 for awrt 0.381					